高级检索

基于深度学习的继电保护故障诊断与自适应整定研究

Research on Relay Protection Fault Diagnosis and Adaptive Setting Based on Deep Learning

  • 摘要: 为解决电力系统继电保护中隐藏故障诊断困难及传统保护参数静态整定无法适应系统动态变化的问题,提出一种融合故障诊断与参数自适应整定的深度学习方法。该方法首先通过构建卷积神经网络实现对TA开路等隐藏故障的精确诊断,保障保护系统的基本可靠性;利用深度前馈网络根据实时工况动态优化保护参数,提升保护的灵敏度与速动性。研究构建了变压器差动保护电流比对模型与电流比率异常指数作为辅助判据。硬件在环测试表明,所提方法能够提高系统对高阻故障、匝间短路的敏感性,短路响应时间缩短的同时能够有效防止非故障工况下的误动作。

     

    Abstract: To address the difficulties in diagnosing hidden faults in power system relay protection and the inability of traditional static setting of protection parameters to adapt to system dynamic changes, this study proposes a deep learning method that integrates fault diagnosis and adaptive parameter setting. The method first constructs a convolutional neural network to achieve accurate diagnosis of hidden faults such as CT (Current Transformer) open circuits, ensuring the basic reliability of the protection system. It then utilizes a deep feedforward network to dynamically optimize protection parameters based on real-time operating conditions, thereby enhancing protection sensitivity and speed. The research establishes a transformer differential protection current comparison model and a current ratio anomaly index as auxiliary criteria. Hardware-in-the-loop testing demonstrates that the proposed method can improve the system's sensitivity to high-impedance faults and inter-turn short circuits, shorten the short-circuit response time, and effectively prevent maloperation under non-fault conditions.

     

/

返回文章
返回