高级检索

基于迁移学习的跨区域配电网投资效益预测模型

Transfer Learning-Based Prediction Model for Cross-Regional Distribution Network Investment Benefits

  • 摘要: 能源转型背景下,配电网跨区域投资面临数据异构、区域差异及模型泛化难题,传统方法难以处理多源变量的非线性关系与动态不确定性,加剧数据稀缺区域的决策误差。为此,文章提出一种融合领域自适应的深度迁移学习框架,通过动态特征对齐与多任务联合优化,解决跨区域配电网投资效益预测难题。模型在特征层引入对抗训练与相关性传播算法,实现区域间负荷特性与政策敏感度的知识迁移,在模型层结合多目标优化与不确定度量化,支持高比例新能源接入场景下的成本-风险权衡决策。

     

    Abstract: Under the energy transition background, cross-regional distribution network investment faces challenges of data heterogeneity, regional disparities, and model generalization limitations. Traditional methods struggle to handle the complex nonlinear relationships and dynamic uncertainties of multi-source variables, leading to increased decision errors in data-scarce regions. To address this, we propose a domain-adaptive deep transfer learning framework that solves cross-regional investment benefit prediction problems through dynamic feature alignment and multi-task joint optimization. The model incorporates adversarial training and correlation propagation algorithms at the feature layer to enable knowledge transfer of regional load characteristics and policy sensitivity. At the model level, it combines multi-objective optimization with uncertainty quantification to support cost-risk tradeoff decisions in high-penetration renewable energy scenarios.

     

/

返回文章
返回