Citation: | XU Bing, ZHAO Hao, CAO Yannan, LI Xuebin. Research on Comprehensive Evaluation of Integrated Energy System Configuration Scheme[J]. RURAL ELECTRIFICATION, 2024, (3): 27-34. DOI: 10.13882/j.cnki.ncdqh.2024.03.008 |
Aiming at the evaluation of integrated energy system configuration schemes, this paper proposes an evaluation method based on the weight coefficient method, which combines the subjective and objective methods of Analytic Hierarchy Process and Entropy Value. Firstly, considering the power grid, heating (cooling) network, and natural gas network comprehensively, the paper establishes a multi-dimensional comprehensive benefit evaluation index system for the comprehensive energy system configuration plan. Secondly, a weight coefficient combining the Analytic Hierarchy Process and Entropy Method is proposed to determine the optimal weight. Finally, the fuzzy comprehensive evaluation method is used for evaluation, and the scoring results of the configuration plan are given. A comprehensive energy system in Inner Mongolia is analyzed to verify the effectiveness of the proposed method.
[1] |
秦婷,刘怀东,王锦桥. 基于碳交易的电-热-气综合能源系统低碳经济调度[J]. 电力系统自动化,2018,42(14):8−13.
|
[2] |
M. BAN, J. YU, M. Shahidehpour, et al. Integration of power-to-hydrogen in day-ahead security constrained unit commitment with high wind penetration [J]. Journal of Modern Power System and Clean Energy, 2017, 5(3): 337–349.
|
[3] |
MUNOZ J, JIMENEZ-REDONDO N, PEREZ-RUIZ J, et al. Natural gas network modeling for power systems reliability studies[C]// Power Tech Conference Proceedings, 2003 IEEE Bologna. IEEE, 2003(4): 8.
|
[4] |
WANG J, FU C, YANG K, et al. Reliability and availability analysis of redundant BCHP (building cooling, heating and power) system[J]. Energy, 2013, 61(4): 531−540.
|
[5] |
MAGO P J, SMITH A D. Evaluation of the potential emissions reductions from the use of CHP systems in different commercial buildings[J]. Building & Environment, 2012, 53(5): 74−82.
|
[6] |
BIEZMA M V, CRISTOBAL J R S. Investment criteria for the selection of cogeneration plants-a state of the art review[J]. Applied Thermal Engineering, 2006,26(5): 583−588.
|
[7] |
董福贵,张也,尚美美. 分布式能源系统多指标综合评价研究[J]. 中国电机工程学报, 2016, 36(12): 3214−3222.
|
[8] |
张涛,朱彤,高乃平,等. 分布式冷热电能源系统优化设计及多指标综合评价方法的研究[J]. 中国电机工程学报,2015,35(14):3706−3713.
|
[9] |
WANG J J, JING Y Y, ZHANG C F, et al. Integrated evaluation of distributed triple-generation systems using improved grey incidence approach[J]. Energy, 2008, 33(9): 1427−1437. doi: 10.1016/j.energy.2008.04.008
|
[10] |
REN H, GAO W, ZHOU W, et al. Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan[J]. Energy Policy, 2009, 37(12): 5484−5493. doi: 10.1016/j.enpol.2009.08.014
|
[11] |
闻旻,刘育权,胡枭,等. 含分布式供能设备的综合能源系统规划评价[J]. 电测与仪表,2018,55(21):75−81.
|
[12] |
徐国钧,刘永胜,李题印,等. 基于层次分析和概率模拟的电动汽车对配网负荷影响研究[J]. 电力系统保护与控制,2012,40(22):38−45.
|
[13] |
谢添. 基于层次分析法的煤矿机电设备采购供应商选择[J]. 能源与环保,2019,41(10):112−115,122.
|
[14] |
刘影,刘岩,丁恒春,等. 基于改进熵值法的智能电能表运行质量综合评价[J]. 自动化与仪器仪表,2019(4):146−148.
|