Advanced Search
ZHANG Gang, CAI Xiao, LI Ming. Analysis of a Case of 35 kV Bus Differential Protection Action Caused by a Deadband Fault[J]. RURAL ELECTRIFICATION, 2024, (1): 89-90. DOI: 10.13882/j.cnki.ncdqh.2024.01.024
Citation: ZHANG Gang, CAI Xiao, LI Ming. Analysis of a Case of 35 kV Bus Differential Protection Action Caused by a Deadband Fault[J]. RURAL ELECTRIFICATION, 2024, (1): 89-90. DOI: 10.13882/j.cnki.ncdqh.2024.01.024

Analysis of a Case of 35 kV Bus Differential Protection Action Caused by a Deadband Fault

More Information
  • Received Date: July 04, 2023
  • Revised Date: November 06, 2023
  • This article introduces a 35 kV bus differential protection action event that occurred during the AVC reactor removal process. Causing all switches on the 35 kVⅡ section bus to trip. Based on on-site collection, the cause of switch tripping was analyzed, and the pre control measures were stated.

  • [1]
    张威, 张知宇, 操晨润, 等. 某220 kV变电站的110 kV正母线母差动作原因分析[J]. 农村电气化,2023(7):19−21.
    [2]
    陶昆,胡毅. 变电站电流互感器一次引线异常接线方式研究[J]. 农村电气化,2021(11):25−28.
    [3]
    王风光,李力,吕航,等. 基于电流分布系数的母差保护非故障相饱和判别[J]. 电力工程技术,2020,39(5):197−203.
    [4]
    张贝贝. 考虑死区故障的馈线自动化技术研究[J]. 农村电气化,2023(7):38−41.
    [5]
    王风光,李力,吕航,等. 母线保护对死区故障的优化解决方案[J]. 电力自动化设备,2021,41(12):219−224.
  • Related Articles

    [1]ZHANG Quanyuan, XIONG Chenxi, SUN Dezhou, DU Wei. Analysis of Transformer Gap Protection Action Caused by Permanent Single-Phase Fault on 220 kV Lines[J]. RURAL ELECTRIFICATION, 2024, (11): 75-78. DOI: 10.13882/j.cnki.ncdqh.2405A013
    [2]SUN Dezhou, ZHANG Quanyuan, DONG Zhanxiang, LIANG Zhilei, KANG Xintong. Analysis of No-load Closing Frequency Voltage Rise and Bus-side Disconnect Switch Phase A Ground Faults on 220 kV Line[J]. RURAL ELECTRIFICATION, 2024, (5): 46-52. DOI: 10.13882/j.cnki.ncdqh.2024.05.012
    [3]CHEN Song. Study on Overall Parameters of Short Circuit Fault of 66 kV Dry Hollow Reactor[J]. RURAL ELECTRIFICATION, 2023, (11): 23-25. DOI: 10.13882/j.cnki.ncdqh.2023.11.009
    [4]CAO Zhijie, HU Zhijing. Fault Analysis of a 35 kV SF6 Circuit Breaker With Low Frequency Alarm Caused by Air Pressure[J]. RURAL ELECTRIFICATION, 2023, (10): 105-107. DOI: 10.13882/j.cnki.ncdqh.2023.10.029
    [5]ZHANG Beibei. Research of Feedback Automation Technology Considering the Dead-zone Fault[J]. RURAL ELECTRIFICATION, 2023, (7): 38-41. DOI: 10.13882/j.cnki.ncdqh.2023.07.010
    [6]ZHANG Minghui. Analysis and Treatment of Abnormal Gas Content in Insulating Oil of 1000 kV Reactor[J]. RURAL ELECTRIFICATION, 2022, (4): 28-30. DOI: 10.13882/j.cnki.ncdqh.2022.04.006
    [7]Wei Junrong, Lv Jiangbo, Qi Anxin. A Case Analysis of Relaying Protection Fault in 35 kV Substations[J]. RURAL ELECTRIFICATION, 2019, (5): 45-46. DOI: 10.13882/j.cnki.ncdqh.2019.05.013
    [8]Liu Gang, Yang Xiaoshuai, Jiao Guangxu. An Oil Leaking Fault in 35 kV Outdoor Reactor Resulting From Expand with Heat and Contract with Cold[J]. RURAL ELECTRIFICATION, 2017, (9): 24-25. DOI: 10.13882/j.cnki.ncdqh.2017.09.008
    [9]Haung Xin. Analysis of Complex Fault Protection Action and Recording of 35 kV Transmission Line with Multipoint Grounding[J]. RURAL ELECTRIFICATION, 2016, (12): 34-35. DOI: 10.13882/j.cnki.ncdqh.2016.12.014
    [10]Jiao Guangxu, Yang Xiaoshuai. Fault Treatment of Mechanism for 35 kV Vacuum Circuit Breakers[J]. RURAL ELECTRIFICATION, 2016, (5): 29-30. DOI: 10.13882/j.cnki.ncdqh.2016.05.011

Catalog

    Article views (21) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return